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Abstract. This work addresses the problem of resource allocation and 
precedence constraints in a Hard Real-time system with Earliest Deadline First 
policy (EDF): the concurrency control and the precedence constraints in 
periodic tasks. It is an improved variant of Stack Resource Policy (SRP) [1], 
which strictly bounds priority inversion using dynamic scheduling policies. The 
task deadlines are reduced to manage precedence constraints; a modified SRP-
based resource access control approach is proposed. This paper uses resource 
constraints as in the SRP policy along EDF; the proposed algorithm produces a 
well-formed policy to handle both precedence-constrained periodic tasks and 
shared resource access in a Hard Real-Time System. 
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1 Introduction 

Real-time system activities are called process, tasks or jobs. A real-time system is 
characterized by a timing constraint in its tasks called deadline, which represents the 
time before a process should complete its execution without causing a catastrophic 
result to the system. A system is considered to be a hard real-time system, if a failure 
caused by a missed deadline may lead to disastrous effects. 

Handling tasks with precedence relationships and resources contention is an issue 
which has not yet fully explored. In this paper this issue is addressed taking basis on 
the proposed solution in the SRP algorithm [1] where task priorities define the order 
of resource access using a stack mechanism. In designing a Real Time System 
restrictions (other than those inherent to the operating environment) need to be 
considered. Three main inherent restrictions of a real-time task can be usually found 
[2]: Time restrictions, determined by its deadline and its execution frequency or 
period, precedence restrictions and resource access restriction, meaning resource 
access management to guarantee the fair use of available resources.  

The unpredictability caused by shared resource access in conflict with other 
concurrent tasks needs to be controlled and it is the main subject of this paper. 
Determining the feasibility of scheduling a set of time-restricted tasks with shared-
resource access and with precedence constraints is a NP-hard problem [3]. In order to 
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reduce the complexity, this paper adopts a preemptive model with assumptions which 
are defined below.    

The paper presents a variant of the Stack Resource Policy (SRP) proposed by 
Baker of a policy to include handling of precedence constraints. The restrictions 
mentioned above are solved by the conjunction of Earliest Deadline First policy [4] 
and SRP. 
In section 2 the main concepts on Real-time Systems and concurrency control are 
presented. In section 3 the proposal’s model and the proposed resource allocation 
policy are discussed. Section 4 is devoted to conclusions and to sketch future work. 

 

2 Concurrency Control and the Stack Resource Policy 

Concurrency control is the management of concurrent conflicting task operations that 
access shared resources or data [5] to avoid conflicts among them. Real-time concept 
adds time requirements satisfaction – deadlines – to this definition [6]. A conflict 
occurs when two tasks try to access the same resource at the same time and, at least, 
one of the tasks operations being a write operation.   

Concurrency control problem can be summarized in two main functions: conflict 
detection and conflict resolution [7]. The standard conflict detection is accomplished 
by using locks (usually mutex semaphores) over resources. When a resource is 
unlocked, the resource is free; otherwise is busy. Usually the lock is considered to be 
exclusive, but in more advanced systems, the type of operation determines the type of 
lock – either read (non exclusive or weak) or writes (exclusive or strong) locks.  
Conflict resolution often is achieved by choosing one of the conflicting tasks for 
abortion, forcing it to release its locks.  

In real-time systems, the concurrency problem is even harder than in conventional 
systems. Priority inversions, blocking, and deadlocks, are problems that should be 
considered to keep the schedulability in the processes involved. To deal with 
concurrency, a natural approach consists in conflict avoidance rather than the 
conventional detection and resolution approach.  

If the problem is avoided, the time used in detection and resolution (time expended 
in maintaining wait-for graphs, task election for abortion and resource releases) can 
be dismissed allowing for a more efficient system execution. However none of 
possible solutions, conflict avoidance or conflict detection and resolution can avoid 
the Blocking problem. Specialized locks for reading and for writing can reduce this 
problem but at the end, there is a need for locks to avoid inconsistencies in the system 
due to concurrency problems.    

Blocking is a source of unpredictability in real-time systems in several forms: 
Undefined waiting, priority inversion, deadlock, etc. When undefined waiting is 
potentially caused by priorities, this can be avoided by priority inheritance: when a 
higher priority task is blocked by a lower priority task, the lower priority task inherits 
priority from the higher one so it cannot be blocked by medium priority tasks.  

Unhappily this technique can lead to priority inversion, however, when properly 
used, reduces blocking time and chained blocking generation [8]. Even if it is not 
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clear whether to use conflict detection and resolution or conflict avoidance, the work 
in concurrency control in real time systems seems to be biased to avoidance 
mechanisms. Among this work, Stack Resource Policy (SRP) proposed by Baker in 
[1] offers improvements over others strategies. SRP can be applied directly to some 
dynamic scheduling policies like EDF, which can support stronger schedulability test.  

SRP reduces the number of context switches in the execution jobs.  

2.1 Stack Resource Policy  

The Stack Resource Policy (SRP) is a technique proposed by Baker, It was proposed 
for accessing shared resources. SRP works with priority and preemption level in each 
task. The priority indicates the importance of a task with respect to another in the 
system, and it can be assigned either statically or dynamically.  

In SRP each tasks τi was characterized by a preemption level πi, which is a static 
parameter assigned to each task before running the system. With the preemption level, 
a task τa can preempt to another task τb only if πa>πb. A fixed parameter makes easier 
the prediction of potential blocking in spite of dynamic priority schemes like EDF. 

In SRP, each resource is required to have a current ceiling CR which is a dynamic 
value computed as a function of the units of R (the system resource set) that are 
currently available, nR denotes the number of units of R that are currently available; 
µR(J) indicates the maximum requirement of job J for R.  The current ceiling of R is 
defined by  

CR(nR) = max[{0} U {π(J): nR <µR(J) }] 
The system ceiling πs is defined as the maximum of the current ceilings of all 

resources, it is πs=max(CRi: i=1,…,m). When a job needs a resource that is not 
available, it is blocked at the time it attempts to preempt, rather tan later. In SRP, a 
job is not allowed to begin until the resources currently available are sufficient to 
meet the maximum requirement of every job that could preempt it, so SRP prevents 
multiple priority inversions. A job could preempt only if its priority is the highest 
among all the tasks in the ready state, and its preemption level is higher than the 
system ceiling.  

3. System Model and a Resource Allocation Policy 

The system model consists of a periodic task set τ. For τ the restrictions considered 
are: time restrictions (execution time, deadline and period), precedence restrictions 
and resource restrictions (resource requests by each task).   

3.1 Symbols  

 
τi A generic periodic task 
ri The release time of an instance of a generic task 
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Ci The computation time of a task (periodic or aperiodic) 
di Absolute deadline of a task 
Di Relative deadline of a task 
si Start time of a task 
Φi The phase of a periodic task.  
fi Finish time 
Ti Period of  τI 
Up Processor utilization factor 
Us Processor available factor 
τ A periodic tasks set 
Gi A directed acyclic graph. It describes the precedence constraints between a 

task subset with causal relations.  
R A system resources set 
Ri A generic resource 

3.2 Assumptions 

   A single-processor system  
   A set of periodic task τ. 
   Each periodic task τi has a period Ti, a computation time Ci, and a relative 

deadline Di. 
   Each Deadline Di may be different to the period Ti. 
   Periodic tasks are scheduled using dynamic-priority assignment, namely Earliest 

Deadline First (EDF); 
   Periodic tasks can start at any time and not only at   time t=0.  
   Tasks are preemptive (i.e. they may be suspended and inserted into the ready 

queue to service ready tasks with major priority). 
   All periodic tasks have hard deadlines. 
   The precedence relations are described by directed acyclic graphs. 
   The whole solution is based on EDF, mainly because it allows a maximum 

utilization of the available computing resources but also because it allows a 
dynamic behavior in arriving tasks.  

3.3 Problem Definition 

The particular problem in this paper is to create a policy with EDF which assigns 
resources from R to the tasks from τ and keeps the precedence constraints in the tasks 
which are defined by directed acyclic graph. The goal is to create a feasible schedule 
that adheres to the policy.  

3.4 Proposed Solution 

The proposal considers two objectives: Solving the precedence constraints and after 
that, solving the resource contention problems in the tasks.  The final solution ensures 
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schedulability at same time it keeps resource and precedence restrictions. The 
proposal works in three steps: defining an execution order considering the precedence 
constraints, setting the execution order, and assigning preemption levels. 

 
Defining an Execution Order considering the Precedence Constraints. For each 
graph (fig. 1) is necessary to generate a serialized schedule which determines the 
execution order of the task with precedence constraints of Gi. This schedule is 
obtained by applying the preorder algorithm on the tree graph. An example is showed 
in fig. 2. 

 
!
i

!
j

!
k

!
l

!
m

 
Fig. 1. Periodic tasks with precedence. 
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Fig. 2. An execution serialized schedule. 

Setting the Execution Order. After the execution order has been established, the 
next step is to adjust the parameters for the tasks in order to guarantee precedence 
constraints.  The parameters to be modified are the relative deadlines and the phase in 
periodic tasks; the phase Φi is the first activation time of τi. Clearly the root must be 
activated first.  So, the tasks phases must be set in the growing order taking as 
reference the execution order of the first step of the algorithm. Considering the 
example in fig. 2, the phases must be Φi<Φj<Φl<Φm<Φk, however it can lead to a 
priority inversion anomaly due to the fact that not necessarily the deadlines are also in 
a decreasing order; taking into account the example of the established order in fig. 1 
and fig. 2, here is showed an example of the precedence anomaly in fig. 3 where the 
task τl starts the execution before the conclusion of τj. 
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Fig. 3. A violation in the precedence constraints occurs with the tasks τ2 and τ3. 

In order to cope with this problem, the relative deadlines need to be modified to 
create a schedule with increasing deadlines. To handle the modification, the 

 

Resource and Precedence Constrainsts in a Hard Real-time System   187



“execution breadth” is defined as the maximum time that a task could wait to start its 
execution in order to meet the deadline.  

The execution breadth in a periodic task τi is defined as the difference between the 
relative deadline and the computation time, it is expressed by: Hj,i=Di-Ci, where Hj is 
the set of all execution breadth in the tasks that belongs to Gj. For all periodic tasks in 
Gi, in order to keep the precedence constraints assignment of the same execution 
breadth is needed. The new execution breadth is determined by: H’j,i=min (Hj).  

In this way, the new relative deadlines of the task in Gi are defined by Dj,i= H’j,i 
+Ci. With this modification the relative deadlines produce a schedule with increasing 
deadlines which leads to the generation of a schedule which keeps the precedence 
constraints. This is proved by the next theorem.  

 
Theorem 1. Let τ be a set with n periodic task: τ1, τ2, τ3,.., ,τn. Assume for all τi : Ci 

!  Di !  Ti. Now, the precedence constraints are represented by a directed acyclic 
graph called G. H is the set of all execution breadth in the tasks that belongs to Gj, 
H>0. σ is a schedule of the entire task in τ with an order keeping the precedence 
relations.  

If it is applied the modification in the parameters as above is defined then the real 
execution with EDF will be executed in the order established by σ.  

Proof. It is proceed by Induction and is based on demonstrating that in all time the 
deadlines will be increasing congruently with the serialization; this proof is enough to 
keep the causal or precedence relations.  

For τ1: The task τ1 keeps the order, because it is the first task in execution and is 
activated in r1

*=0 
For τ2: The task τ2 also keeps the order, because it is activated C1 time units after 

the activation of τ1 and d2>d1, because ∀Ci :Ci>0 and d2 = C1+C2+ H > d1 = C1+ H. 
Now, suppose the theorem is maintained for τk, this is:  

dk>dk-1 . (1) 

Now, it is needed to prove that the theorem is maintained for τk+1. Taking (1) and 
adding Ck+H in the left part and Ck+1+H in the right part, the relation is kept and 
produces  

dk + Ck+1+H > dk-1+ Ck +H .  (2) 

It is kept because dk-1+ Ck +H = dk and H+Ck+1>0, and ∀i :Ci>0  and H ! 0 
Now, substituting dk+1 by dk+Ck+1+H and dk by dk-1+Ck+H in (2), the result is  
dk+1 > dk 
With this modification in the deadlines, a schedule is obtained that keeps the 

precedence relationship and shown in the fig. 4.  
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Fig. 4. Schedule that keeps the precedence relationship and time restriction (deadline) 

Assigning Preemption Levels for Considering the Integration between Resource 
Allocations and the Precedence Handling. The next and last step is considering the 
resource request in tasks. The original job from [1] does not consider precedence 
constraints. This step modifies the Baker proposal to consider the precedence 
constraints.   

Actually,  the simple integration of EDF + the actual proposal + Baker proposal, 
may lead to the wrong impression that the problem is solved because time restriction 
is considered by EDF, precedence relations are covered by the first part of this 
proposal, while resource handling is covered via SRP.  

This is a mistake because direct application of SRP may lead to situations where 
the precedence relationships are not respected as it is shown later.   

To show the problem lets include a new independent task τv which requires a 
resource R in order to be executed, and τj request the same resource in the first 
computation time, then the scenario showed in fig. 5 can arise, where τv is executed 
before than τi although dv>di.  

This is because τv executes a lock (R) that produces a blocking of the task τi, after 
which τl arrives and preempts τv because dv>dl.   

!
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m

!
k

!
v R R R  

Fig. 5. The precedence constraints were broken because τl was executed before than τj, and 
three tasks failed to meet the deadlines. 

SRP could work with EDF if preemption levels are ordered inversely with respect 
to the order of relative deadlines; that is πi>πj  Di<Dj. This is because of the general 
definition in order to keep all the properties is required that if Ja arrives after Jb and Ja 
has higher priority than Jb, then Ja must have a higher preemption level than Jb. SRP 
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by itself does not consider the precedence constraints. To achieve this, the proposal 
consists in changing the preemption level assignation to integrate SRP to this work.  

Each graph Gi generates an execution serialized schedule σi. Before assigning the 
preemption level, for each Gi, should be considered that the preemption level 
assignation must be in an inverse order with respect to the deadline order presented 
above.  From the example presented in fig. 1 and fig. 2, it is if Φi<Φj<Φl<Φm<Φk and 
di<dj<dl<dm<dk then must be πi> πj>πl>πm>πk in order to keep the precedence 
constraints. To consider two or more directed acyclic graphs, the preemption level 
assignation must be combined in competetion with the best element of each graph. 
This is in congruence with the original strategy of SRP because it considers the 
relatives deadlines.  

Because schedule σi is ordered in congruence with the internal preemption levels, 
the first element of σi is the element with the smallest preemption level.  Initially   a 
counter called pl and with a value in “1” is set, it assign its value as the preemption 
level to the selected element (task). Let get(σ1,σ2,..,σn-1,σn) be an instruction which 
compares the first element in each schedule, takes the element or task with the 
smallest relative deadline, assigns the pl as preemption level in the selected task (this 
task won’t be considered in the next steps) and increments pl in “1”.  The get 
instruction must be executed until that all task in τ have received a preemption level. 
It can be seen like a general schedule construction as is showed in fig. 6. This way of   
preemption levels assignment integrates SRP with the precedence management policy 
presented in this paper. So the execution with SRP keeps the established order in the 
tasks, as proved in the Theorem 2. 

!
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!2 !b .

!3 !c .

!
4

!
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!5 !e

get

 
 

Fig. 6. The get instruction: functionality. 
 

Lemma 1. Let τ be a set with n periodic task: τ1, τ2, τ3,.., ,τn. Assume for all τi : Ci !  
Di !  Ti. Now, the precedence constraints are represented by a directed acyclic graph 
called G. Let be σ an ordered schedule of the entire task (τa-> τb-> τc-> τd-> τe) in τ 
with an order keeping the precedence relations, τa is predecessor of τb, τb is 
predecessor of τc, etc. If   a decreasing order of preemption levels with respect to the 
graph is assigned, where the time parameters were modified to ensure precedence 
relationships, then a feasible schedule is produced, which considers precedence 
constraints and resource allocations.  

Proof. In order to prove this lemma, is enough to demonstrate that the modification in 
the preemption levels keeps the precedence constraints. The other aspects do not 
change the properties of SRP. It is proceed by contradiction. Let be two tasks with 
precedence constraints, being τa the task that must be executed first and τb the second 
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one, and πa > πb.  Suppose that the assignation produces an execution inversion, it is 
τb is executed before than τa, it means that τa was blocked by another task, it is πa < πs. 
So, τb was executed before than τa, then it means than πb > πa, which leads to a 
contradiction.  

Theorem 2. Let G1, G2, ..,Gn  be the  directed acyclic graphs that represents the 
precedence constraints between all tasks in τ. Each Gi is defined by at least one task 
and for all i.j: 1..n, Gi∩Gj = {}. The get instruction defined above produces an 
assignation of preemption levels to all task of τ which produces a feasible schedule 
considering SRP and the proposal for managing precedence constraints. 

Proof. In order to prove this theorem, it is only necessary to exhibit that the assigned 
preemption levels maintain the precedence rules established. The get instruction in 
order to construct the general assignment, for each σi always considers the element 
with the time more distant to be activated as candidate, it for assigning the preemption 
level; which is incremented after an assignment. The candidates of σ1, σ2 ,.., σn-1, σn 
competes as in SRP, by considering the relative deadline, which was proved in [1] 
that maintains the properties for SRP with independent tasks. This is true also in this 
work, because the tasks between two graphs are independent, Gi∩Gj = {}. Now, the 
last thing is to demonstrate that the order in each graph keeps the precedence 
constraints, which was proved in Lemma 1. So, this theorem remains.   

4. Conclusions and Future Work  

In this paper, a policy for considering precedence constraints and resource allocation 
in a system with EDF has been proposed, it works in three steps: defining an 
execution order considering the precedence constraints, setting the execution order 
with modifications in the deadlines and phases of the tasks, and finally, assigning 
preemption levels. The last part is a refinement of SRP with a modification in the 
form that preemption levels are assigned. The modification consists in considering a 
serialized execution, which keeps the causal relationships. The proposed algorithm 
correctness has been demonstrated with analytical proofs; in the sense that modifying 
tasks deadlines and phases is enough to keep the precedence constraints with EDF. It 
was proved that with the proposed assignment in the preemption levels, SRP could 
consider precedence constraints after that a serialized schedule has been defined. This 
work is part of a local scheduler in a distributed scheduling mechanism. Actually a 
distributed simulator is in place; in this simulator the main parts of the architecture 
are implemented trying to simulate real conditions. The proposed algorithm is being 
compared with a proposal that uses resource reservation [9], [10]; the results will be 
presented in a future work.   
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