
Resource and Precedence Constraints in
a Hard Real-time System

Luis Gutiérrez, Raúl Jacinto, Julio Martínez, José Barrios

Universidad Autónoma de Aguascalientes, Av. Universidad s/n,
Aguascalientes, Ags., 20100 México

lgutierr@cencar.udg.mx, rjacinto@cucea.udg.mx, jucemaro@yahoo.com,
jmbarrio@hotmail.com

Abstract. This work addresses the problem of resource allocation and
precedence constraints in a Hard Real-time system with Earliest Deadline First
policy (EDF): the concurrency control and the precedence constraints in
periodic tasks. It is an improved variant of Stack Resource Policy (SRP) [1],
which strictly bounds priority inversion using dynamic scheduling policies. The
task deadlines are reduced to manage precedence constraints; a modified SRP-
based resource access control approach is proposed. This paper uses resource
constraints as in the SRP policy along EDF; the proposed algorithm produces a
well-formed policy to handle both precedence-constrained periodic tasks and
shared resource access in a Hard Real-Time System.

Keywords: deadline, precedence-constraints, real-time, resource-constraints.

1 Introduction

Real-time system activities are called process, tasks or jobs. A real-time system is
characterized by a timing constraint in its tasks called deadline, which represents the
time before a process should complete its execution without causing a catastrophic
result to the system. A system is considered to be a hard real-time system, if a failure
caused by a missed deadline may lead to disastrous effects.

Handling tasks with precedence relationships and resources contention is an issue
which has not yet fully explored. In this paper this issue is addressed taking basis on
the proposed solution in the SRP algorithm [1] where task priorities define the order
of resource access using a stack mechanism. In designing a Real Time System
restrictions (other than those inherent to the operating environment) need to be
considered. Three main inherent restrictions of a real-time task can be usually found
[2]: Time restrictions, determined by its deadline and its execution frequency or
period, precedence restrictions and resource access restriction, meaning resource
access management to guarantee the fair use of available resources.

The unpredictability caused by shared resource access in conflict with other
concurrent tasks needs to be controlled and it is the main subject of this paper.
Determining the feasibility of scheduling a set of time-restricted tasks with shared-
resource access and with precedence constraints is a NP-hard problem [3]. In order to

A. Gelbukh, S. Suárez, H. Calvo (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 29, 2007, pp. 183-192

Received 01/07/07
Accepted 19/10/07

Final version 24/10/07

reduce the complexity, this paper adopts a preemptive model with assumptions which
are defined below.

The paper presents a variant of the Stack Resource Policy (SRP) proposed by
Baker of a policy to include handling of precedence constraints. The restrictions
mentioned above are solved by the conjunction of Earliest Deadline First policy [4]
and SRP.
In section 2 the main concepts on Real-time Systems and concurrency control are
presented. In section 3 the proposal’s model and the proposed resource allocation
policy are discussed. Section 4 is devoted to conclusions and to sketch future work.

2 Concurrency Control and the Stack Resource Policy

Concurrency control is the management of concurrent conflicting task operations that
access shared resources or data [5] to avoid conflicts among them. Real-time concept
adds time requirements satisfaction – deadlines – to this definition [6]. A conflict
occurs when two tasks try to access the same resource at the same time and, at least,
one of the tasks operations being a write operation.

Concurrency control problem can be summarized in two main functions: conflict
detection and conflict resolution [7]. The standard conflict detection is accomplished
by using locks (usually mutex semaphores) over resources. When a resource is
unlocked, the resource is free; otherwise is busy. Usually the lock is considered to be
exclusive, but in more advanced systems, the type of operation determines the type of
lock – either read (non exclusive or weak) or writes (exclusive or strong) locks.
Conflict resolution often is achieved by choosing one of the conflicting tasks for
abortion, forcing it to release its locks.

In real-time systems, the concurrency problem is even harder than in conventional
systems. Priority inversions, blocking, and deadlocks, are problems that should be
considered to keep the schedulability in the processes involved. To deal with
concurrency, a natural approach consists in conflict avoidance rather than the
conventional detection and resolution approach.

If the problem is avoided, the time used in detection and resolution (time expended
in maintaining wait-for graphs, task election for abortion and resource releases) can
be dismissed allowing for a more efficient system execution. However none of
possible solutions, conflict avoidance or conflict detection and resolution can avoid
the Blocking problem. Specialized locks for reading and for writing can reduce this
problem but at the end, there is a need for locks to avoid inconsistencies in the system
due to concurrency problems.

Blocking is a source of unpredictability in real-time systems in several forms:
Undefined waiting, priority inversion, deadlock, etc. When undefined waiting is
potentially caused by priorities, this can be avoided by priority inheritance: when a
higher priority task is blocked by a lower priority task, the lower priority task inherits
priority from the higher one so it cannot be blocked by medium priority tasks.

Unhappily this technique can lead to priority inversion, however, when properly
used, reduces blocking time and chained blocking generation [8]. Even if it is not

184 Luis Gutiérrez, Raúl Jacinto, Juliio Martínez, José Barrios

clear whether to use conflict detection and resolution or conflict avoidance, the work
in concurrency control in real time systems seems to be biased to avoidance
mechanisms. Among this work, Stack Resource Policy (SRP) proposed by Baker in
[1] offers improvements over others strategies. SRP can be applied directly to some
dynamic scheduling policies like EDF, which can support stronger schedulability test.

SRP reduces the number of context switches in the execution jobs.

2.1 Stack Resource Policy

The Stack Resource Policy (SRP) is a technique proposed by Baker, It was proposed
for accessing shared resources. SRP works with priority and preemption level in each
task. The priority indicates the importance of a task with respect to another in the
system, and it can be assigned either statically or dynamically.

In SRP each tasks τi was characterized by a preemption level πi, which is a static
parameter assigned to each task before running the system. With the preemption level,
a task τa can preempt to another task τb only if πa>πb. A fixed parameter makes easier
the prediction of potential blocking in spite of dynamic priority schemes like EDF.

In SRP, each resource is required to have a current ceiling CR which is a dynamic
value computed as a function of the units of R (the system resource set) that are
currently available, nR denotes the number of units of R that are currently available;
µR(J) indicates the maximum requirement of job J for R. The current ceiling of R is
defined by

CR(nR) = max[{0} U {π(J): nR <µR(J) }]
The system ceiling πs is defined as the maximum of the current ceilings of all

resources, it is πs=max(CRi: i=1,…,m). When a job needs a resource that is not
available, it is blocked at the time it attempts to preempt, rather tan later. In SRP, a
job is not allowed to begin until the resources currently available are sufficient to
meet the maximum requirement of every job that could preempt it, so SRP prevents
multiple priority inversions. A job could preempt only if its priority is the highest
among all the tasks in the ready state, and its preemption level is higher than the
system ceiling.

3. System Model and a Resource Allocation Policy

The system model consists of a periodic task set τ. For τ the restrictions considered
are: time restrictions (execution time, deadline and period), precedence restrictions
and resource restrictions (resource requests by each task).

3.1 Symbols

τi A generic periodic task
ri The release time of an instance of a generic task

Resource and Precedence Constrainsts in a Hard Real-time System 185

Ci The computation time of a task (periodic or aperiodic)
di Absolute deadline of a task
Di Relative deadline of a task
si Start time of a task
Φi The phase of a periodic task.
fi Finish time
Ti Period of τI
Up Processor utilization factor
Us Processor available factor
τ A periodic tasks set
Gi A directed acyclic graph. It describes the precedence constraints between a

task subset with causal relations.
R A system resources set
Ri A generic resource

3.2 Assumptions

 A single-processor system
 A set of periodic task τ.
 Each periodic task τi has a period Ti, a computation time Ci, and a relative

deadline Di.
 Each Deadline Di may be different to the period Ti.
 Periodic tasks are scheduled using dynamic-priority assignment, namely Earliest

Deadline First (EDF);
 Periodic tasks can start at any time and not only at time t=0.
 Tasks are preemptive (i.e. they may be suspended and inserted into the ready

queue to service ready tasks with major priority).
 All periodic tasks have hard deadlines.
 The precedence relations are described by directed acyclic graphs.
 The whole solution is based on EDF, mainly because it allows a maximum

utilization of the available computing resources but also because it allows a
dynamic behavior in arriving tasks.

3.3 Problem Definition

The particular problem in this paper is to create a policy with EDF which assigns
resources from R to the tasks from τ and keeps the precedence constraints in the tasks
which are defined by directed acyclic graph. The goal is to create a feasible schedule
that adheres to the policy.

3.4 Proposed Solution

The proposal considers two objectives: Solving the precedence constraints and after
that, solving the resource contention problems in the tasks. The final solution ensures

186 Luis Gutiérrez, Raúl Jacinto, Juliio Martínez, José Barrios

schedulability at same time it keeps resource and precedence restrictions. The
proposal works in three steps: defining an execution order considering the precedence
constraints, setting the execution order, and assigning preemption levels.

Defining an Execution Order considering the Precedence Constraints. For each
graph (fig. 1) is necessary to generate a serialized schedule which determines the
execution order of the task with precedence constraints of Gi. This schedule is
obtained by applying the preorder algorithm on the tree graph. An example is showed
in fig. 2.

!
i

!
j

!
k

!
l

!
m

Fig. 1. Periodic tasks with precedence.

!
i

!
j

!
l

!
m

!
k

Fig. 2. An execution serialized schedule.

Setting the Execution Order. After the execution order has been established, the
next step is to adjust the parameters for the tasks in order to guarantee precedence
constraints. The parameters to be modified are the relative deadlines and the phase in
periodic tasks; the phase Φi is the first activation time of τi. Clearly the root must be
activated first. So, the tasks phases must be set in the growing order taking as
reference the execution order of the first step of the algorithm. Considering the
example in fig. 2, the phases must be Φi<Φj<Φl<Φm<Φk, however it can lead to a
priority inversion anomaly due to the fact that not necessarily the deadlines are also in
a decreasing order; taking into account the example of the established order in fig. 1
and fig. 2, here is showed an example of the precedence anomaly in fig. 3 where the
task τl starts the execution before the conclusion of τj.

!
i

!
j

!
l

!
m

!
k

Fig. 3. A violation in the precedence constraints occurs with the tasks τ2 and τ3.

In order to cope with this problem, the relative deadlines need to be modified to
create a schedule with increasing deadlines. To handle the modification, the

Resource and Precedence Constrainsts in a Hard Real-time System 187

“execution breadth” is defined as the maximum time that a task could wait to start its
execution in order to meet the deadline.

The execution breadth in a periodic task τi is defined as the difference between the
relative deadline and the computation time, it is expressed by: Hj,i=Di-Ci, where Hj is
the set of all execution breadth in the tasks that belongs to Gj. For all periodic tasks in
Gi, in order to keep the precedence constraints assignment of the same execution
breadth is needed. The new execution breadth is determined by: H’j,i=min (Hj).

In this way, the new relative deadlines of the task in Gi are defined by Dj,i= H’j,i
+Ci. With this modification the relative deadlines produce a schedule with increasing
deadlines which leads to the generation of a schedule which keeps the precedence
constraints. This is proved by the next theorem.

Theorem 1. Let τ be a set with n periodic task: τ1, τ2, τ3,.., ,τn. Assume for all τi : Ci

! Di ! Ti. Now, the precedence constraints are represented by a directed acyclic
graph called G. H is the set of all execution breadth in the tasks that belongs to Gj,
H>0. σ is a schedule of the entire task in τ with an order keeping the precedence
relations.

If it is applied the modification in the parameters as above is defined then the real
execution with EDF will be executed in the order established by σ.

Proof. It is proceed by Induction and is based on demonstrating that in all time the
deadlines will be increasing congruently with the serialization; this proof is enough to
keep the causal or precedence relations.

For τ1: The task τ1 keeps the order, because it is the first task in execution and is
activated in r1

*=0
For τ2: The task τ2 also keeps the order, because it is activated C1 time units after

the activation of τ1 and d2>d1, because ∀Ci :Ci>0 and d2 = C1+C2+ H > d1 = C1+ H.
Now, suppose the theorem is maintained for τk, this is:

dk>dk-1 . (1)

Now, it is needed to prove that the theorem is maintained for τk+1. Taking (1) and
adding Ck+H in the left part and Ck+1+H in the right part, the relation is kept and
produces

dk + Ck+1+H > dk-1+ Ck +H . (2)

It is kept because dk-1+ Ck +H = dk and H+Ck+1>0, and ∀i :Ci>0 and H ! 0
Now, substituting dk+1 by dk+Ck+1+H and dk by dk-1+Ck+H in (2), the result is
dk+1 > dk
With this modification in the deadlines, a schedule is obtained that keeps the

precedence relationship and shown in the fig. 4.

188 Luis Gutiérrez, Raúl Jacinto, Juliio Martínez, José Barrios

!
i

!
j

!
l

!
m

!
k

Fig. 4. Schedule that keeps the precedence relationship and time restriction (deadline)

Assigning Preemption Levels for Considering the Integration between Resource
Allocations and the Precedence Handling. The next and last step is considering the
resource request in tasks. The original job from [1] does not consider precedence
constraints. This step modifies the Baker proposal to consider the precedence
constraints.

Actually, the simple integration of EDF + the actual proposal + Baker proposal,
may lead to the wrong impression that the problem is solved because time restriction
is considered by EDF, precedence relations are covered by the first part of this
proposal, while resource handling is covered via SRP.

This is a mistake because direct application of SRP may lead to situations where
the precedence relationships are not respected as it is shown later.

To show the problem lets include a new independent task τv which requires a
resource R in order to be executed, and τj request the same resource in the first
computation time, then the scenario showed in fig. 5 can arise, where τv is executed
before than τi although dv>di.

This is because τv executes a lock (R) that produces a blocking of the task τi, after
which τl arrives and preempts τv because dv>dl.

!
i

!
j R

!
l

!
m

!
k

!
v R R R

Fig. 5. The precedence constraints were broken because τl was executed before than τj, and
three tasks failed to meet the deadlines.

SRP could work with EDF if preemption levels are ordered inversely with respect
to the order of relative deadlines; that is πi>πj  Di<Dj. This is because of the general
definition in order to keep all the properties is required that if Ja arrives after Jb and Ja
has higher priority than Jb, then Ja must have a higher preemption level than Jb. SRP

Resource and Precedence Constrainsts in a Hard Real-time System 189

by itself does not consider the precedence constraints. To achieve this, the proposal
consists in changing the preemption level assignation to integrate SRP to this work.

Each graph Gi generates an execution serialized schedule σi. Before assigning the
preemption level, for each Gi, should be considered that the preemption level
assignation must be in an inverse order with respect to the deadline order presented
above. From the example presented in fig. 1 and fig. 2, it is if Φi<Φj<Φl<Φm<Φk and
di<dj<dl<dm<dk then must be πi> πj>πl>πm>πk in order to keep the precedence
constraints. To consider two or more directed acyclic graphs, the preemption level
assignation must be combined in competetion with the best element of each graph.
This is in congruence with the original strategy of SRP because it considers the
relatives deadlines.

Because schedule σi is ordered in congruence with the internal preemption levels,
the first element of σi is the element with the smallest preemption level. Initially a
counter called pl and with a value in “1” is set, it assign its value as the preemption
level to the selected element (task). Let get(σ1,σ2,..,σn-1,σn) be an instruction which
compares the first element in each schedule, takes the element or task with the
smallest relative deadline, assigns the pl as preemption level in the selected task (this
task won’t be considered in the next steps) and increments pl in “1”. The get
instruction must be executed until that all task in τ have received a preemption level.
It can be seen like a general schedule construction as is showed in fig. 6. This way of
preemption levels assignment integrates SRP with the precedence management policy
presented in this paper. So the execution with SRP keeps the established order in the
tasks, as proved in the Theorem 2.

!
1

!
a

!
w .

!2 !b .

!3 !c .

!
4

!
d .

!5 !e

get

Fig. 6. The get instruction: functionality.

Lemma 1. Let τ be a set with n periodic task: τ1, τ2, τ3,.., ,τn. Assume for all τi : Ci !
Di ! Ti. Now, the precedence constraints are represented by a directed acyclic graph
called G. Let be σ an ordered schedule of the entire task (τa-> τb-> τc-> τd-> τe) in τ
with an order keeping the precedence relations, τa is predecessor of τb, τb is
predecessor of τc, etc. If a decreasing order of preemption levels with respect to the
graph is assigned, where the time parameters were modified to ensure precedence
relationships, then a feasible schedule is produced, which considers precedence
constraints and resource allocations.

Proof. In order to prove this lemma, is enough to demonstrate that the modification in
the preemption levels keeps the precedence constraints. The other aspects do not
change the properties of SRP. It is proceed by contradiction. Let be two tasks with
precedence constraints, being τa the task that must be executed first and τb the second

190 Luis Gutiérrez, Raúl Jacinto, Juliio Martínez, José Barrios

one, and πa > πb. Suppose that the assignation produces an execution inversion, it is
τb is executed before than τa, it means that τa was blocked by another task, it is πa < πs.
So, τb was executed before than τa, then it means than πb > πa, which leads to a
contradiction.

Theorem 2. Let G1, G2, ..,Gn be the directed acyclic graphs that represents the
precedence constraints between all tasks in τ. Each Gi is defined by at least one task
and for all i.j: 1..n, Gi∩Gj = {}. The get instruction defined above produces an
assignation of preemption levels to all task of τ which produces a feasible schedule
considering SRP and the proposal for managing precedence constraints.

Proof. In order to prove this theorem, it is only necessary to exhibit that the assigned
preemption levels maintain the precedence rules established. The get instruction in
order to construct the general assignment, for each σi always considers the element
with the time more distant to be activated as candidate, it for assigning the preemption
level; which is incremented after an assignment. The candidates of σ1, σ2 ,.., σn-1, σn
competes as in SRP, by considering the relative deadline, which was proved in [1]
that maintains the properties for SRP with independent tasks. This is true also in this
work, because the tasks between two graphs are independent, Gi∩Gj = {}. Now, the
last thing is to demonstrate that the order in each graph keeps the precedence
constraints, which was proved in Lemma 1. So, this theorem remains.

4. Conclusions and Future Work

In this paper, a policy for considering precedence constraints and resource allocation
in a system with EDF has been proposed, it works in three steps: defining an
execution order considering the precedence constraints, setting the execution order
with modifications in the deadlines and phases of the tasks, and finally, assigning
preemption levels. The last part is a refinement of SRP with a modification in the
form that preemption levels are assigned. The modification consists in considering a
serialized execution, which keeps the causal relationships. The proposed algorithm
correctness has been demonstrated with analytical proofs; in the sense that modifying
tasks deadlines and phases is enough to keep the precedence constraints with EDF. It
was proved that with the proposed assignment in the preemption levels, SRP could
consider precedence constraints after that a serialized schedule has been defined. This
work is part of a local scheduler in a distributed scheduling mechanism. Actually a
distributed simulator is in place; in this simulator the main parts of the architecture
are implemented trying to simulate real conditions. The proposed algorithm is being
compared with a proposal that uses resource reservation [9], [10]; the results will be
presented in a future work.

Resource and Precedence Constrainsts in a Hard Real-time System 191

References

1. Baker, T.P.: Stack-based scheduling of real-time processes. Journal of Real-Time Systems, 3
(1991)

2. Liu, J.W.S.: Issues in distributed real-time systems: Workshop on Large, distributed,
parallel architecture real-time systems (1993)

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database
systems, Addison Wesley Publishing (1987)

4. Horn, W.: Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21,
(1974)

5. DiPippo, L., Wolfe, V.F.: Real-time databases, University of Rhode Island (1995)
6. Ramamritham, K.: Real-time databases. International Journal of Distributed and Parallel

Databases (1996)
7. Yu, P.S., Wu, K.L., Lin, K.J., Son, S.H.: On real-time databases: concurrency control and

scheduling. IBM Watson research center, University of Illinois, University of Virginia
(1994)

8. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach to real-
time synchronization. IEEE Transactions on Computers (1990)

9. Abeni, L., Lipari, G., Buttazzo, G.: Constant bandwidth vs proportional share resource
allocation. In Proceedings of the IEEE International Conference on Multimedia Computing
and Systems, Florence, Italy, (1999)

10. Saowanee, S., Rajkumar, R.: Hierarchical reservation in resource kernels. Technical report,
Electrical and Computer Engineering CM, (2001)

192 Luis Gutiérrez, Raúl Jacinto, Juliio Martínez, José Barrios

